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ABSTRACT

This mini-review summarizes the knowledge about the scope and pathway of a novel

non-conventional tandem procedure of acetalization which allows a simultaneous

epimerization of cyclic polyols with three or four contiguous hydroxyl groups. Such

triols and tetrols, e.g., pyranosides or inositols, form acetols on heating with highly

active aldehydes or ketones in the presence of a carbodiimide, provided that their OH-

groups show a cis/trans or cis/trans/trans sequence. The inversion of one chiral center

(triols) and of one or two chiral centers (tetrols) was achieved. The stepwise removing

of the protecting groups is reported.
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INTRODUCTION

Several chemical methods are known to invert chiral alcohols, with most being two or

more step procedures. A stereoselective displacement of a hydroxyl group first requires

activation, i.e., transformation into a good leaving group such as sulfonate esters (tosyl,

mesyl, or triflyl). Such ester groups may be displaced with cesium, potassium or

tetraalkylammonium carboxylates followed by hydrolysis,[1-12] with potassium superox-

ide,[13 – 15] or treatment with nitrite,[16,17] or with nitrate[18,19] followed by reduction. The

Mitsunobu reaction[20] is special since the alcohol activation and SN2 displacement

reaction take place in a one pot procedure. The method generally produces good yields

with high stereoselectivity and is compatible with a wide range of functional groups.

Because epimerizations are important tools in synthesizing less available diastereomers

from reasonable common precursors, the above mentioned methods have been also

established in synthetic carbohydrate and inositol chemistry.[20 – 29] However, a more or

less lavish protecting group chemistry is indispensable in order to achieve regioselectivity

with such highly functionalised substrates. By contrast, the subsequently described new

three components method allows the use of unprotected triols or tetrols for regio- and

stereoselective epimerization of carbohydrates and inositols, respectively.

In 1994, we reported about a non-conventional acetalization of methyl a-L-

rhamnopyranoside (1) which was accompanied by a highly stereoselective epimerization

of the sugar, Scheme 1.[30,31] In a one pot procedure, the L-altrose derivatives 2 and 3a

were formed on heating of 1 with hexafluoroacetone (HFA) and dicyclohexylcarbodii-

mide (DCC) in dichloromethane. Under analogous conditions, methyl a-D-mannopyrano-

side (4) could be converted into the a-D-altrose derivative 5, likewise epimerized at C-

atom 3, Scheme 1.[30,32] The surprising result initiated investigations with further highly

carbonyl active reagents, such as perfluoroalkanals and trichloroacetaldehyde (chloral),

which were very successful.

An advantage of the introduced acetal moieties is their stability to strong acids. In

contrast to acid-catalyzed ethylidenations of carbohydrates, which predominantly generate

exo-H diastereomers[33 – 36] the cyclic acetals synthesized by the new three components

method with chloral or perfluoroalkanals, are predominantly endo-H diastereomers.

The acetalization is non-conventional, because the reaction is not catalyzed by

acids and because the oxygen atom of the carbonyl compound (but not that of the

alcoholic component) is inserted into the acetal moiety, Scheme 2.

SCOPE AND PATHWAY OF THE REACTION

The acetalization/epimerization method, described in various original papers and in

the book ‘‘Essentials of Carbohydrate Chemistry and Biochemistry,’’[27] is a three

component reaction which requires the following prerequisites:

. Substrates: Cyclic triols (or tetrols) with contiguous hydroxyl groups in a cis–

trans sequence. The reaction always proceeds with clean inversion of the

configuration at the middle C-atom of the cis–trans triol unit.

aInitially, the correct structure of L-altropyranoside 3 was not identified.[32]
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. Reagents: Only highly active carbonyl reagents such as trichloroacetaldehyde

(chloral), hexafluoroacetone or perfluoroalkanals.
. Co-reagents: Carbodiimides like dicyclohexyl- or diisopropylcarbodiimide.

The following information threw additional light on the reaction sequence

1. The carbamoyl group is always introduced on the cis-side of the triol unit.

2. The highly active carbonyl reagent forms hemiacetals in a reversible reaction

with the polyol.[37]

3. These hemiacetals cause solubilization of the corresponding polyol in the

solvents dichloromethane or 1,2-dichloroethane, and acidification of neigh-

boring hydroxyl groups as a result of their electron withdrawing ability.

4. Adequately acidic OH groups add to carbodiimides generating a corresponding

isourea. The middle OH group of an all vicinal triol unit is the most acidic,

should the occasion arise for formation of two neighboring hemiacetals.

Scheme 1. i = HFA, DCC, CH2Cl2, 50�C, 6 h (from Refs. [30,32].), ii = HFA, DCC, CH2Cl2,

50�C (2 h) ! rt (2 h). (From Ref. [30].)

Scheme 2. Pathway of the non-classical acetalization of cyclic cis-trans-triols.
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When an OH group becames more acidic only by one neighboring acceptor

group, the formation of isourea takes place much slower. The latter could be

confirmed by the model experiment shown in Scheme 3. Phenyl 2-chlorodi-

fluoromethyl-2-deoxy-1-thio-D-arabinopyranoside (6) and DCC were refluxed in

1,2-dichloroethane. After 30 h, only about 70% of the starting material had been

converted into a complex mixture of products, which was not investigated

further. In a second experiment, 0.5 equivalents of chloral were added to the

starting mixture. After refluxing of this mixture for 3 h, two major products were

detected and isolated, the acetal 7 (27%) and cyclic carbonic acid ester

8 (33%).[38,39] In this case, the OH group in the 3-position was acidified by the

Scheme 3. R = cyclohexyl.

Scheme 4. i = chloral, (CH2Cl)2, reflux, 6 h; ii = chloral, DCC, (CH2Cl)2, reflux, 8 h;

R = cyclohexyl.
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chlorodifluoromethyl group as well as by a hemiacetal moiety in the 4-position

(intermediate A) stimulating the formation of intermediate B, Scheme 3.

5. Isoureas evidently react fast to give cyclic imidocarbonic acid esters in the

presence of a cis-arranged hemiacetal group. The subsequent acetalization step

(irreversible intramolecular SN2—reaction) also proceeds fast, since that is the

only interpretation for the high regio- and the stereoselectivity of the

acetalization reaction (for the competing pathway see paragraph 6). Cyclic

carbonates, the hydrolysis products of the imidocarbonic acid ester inter-

mediates, could be isolated in some cases.[40,41] (Schemes 3, 4 and 5)

Scheme 5. R = cyclohexyl; i = DCC, (CH2Cl)2, reflux; ii = RFCH=O, DCC, (CH2Cl)2, reflux,

5–6 h. (From Ref. [65].)
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6. Finally, the nitrogen atom of the cyclic imidocarbonic acid ester intermediate

is protonated by the neighboring hemiacetal function followed by a fast

intramolecular SN2 attack of the hemiacetal anion as shown in Scheme 2.

Thus, the cyclic acetal and the carbamoyl group are formed. The acetalization

step proceeds irreversibly, i.e., it occurs in a kinetically controlled way. From

this follows that the endo-H/exo-H ratio of diastereomeric acetals strongly

depends on the latter reaction step. Normally, the endo-H form is predominant;

acetal 7 is an exception, Scheme 3.[38]

7. The configuration of acetal 7 indicates a divergent pathway for acetal

formation from intermediate B, Scheme 3. The hypothesis is that, after

protonation of the isourea moiety by the cis-arranged hemiacetal, dicyclohex-

ylurea leaves the molecule in an SN1-type reaction. Consequently, this reaction

step certainly competes with the formation of an iminodioxolane ring, but the

generation of a carbenium ion proceeds slower, as described in the paragraphs

4 and 5. The final ring closure step proceeds with retention, because a cis-

arrangement of the acetal is favoured.

Comparative experiments with the regioisomers 1,2-O-isopropylidene-4-O-(N,N’-
dicyclohexylisoureido)-b-D-fructopyranose (9) and 1,2-O-isopropylidene-3-O-(N,N’-
dicyclohexylisoureido)-b-D-fructopyranose (12) had shown that only the 4-O-isoureido

derivative 9 forms a cyclic acetal on heating with chloral in 1,2-dichloroethane,

whereas the 3-O-isoureido isomer did not give isolable amounts of any trichloroethy-

lidene product, Scheme 4.[42] This allows the conclusion that direct replacements of the

isoureido group by intramolecular attack of a trans-arranged neighboring hemiacetal

are not favoured in competition with the formation of imidocarbonic acid ester inter-

mediates. However, the successful acetalization of 1,6-anhydro-D-glucose (13) indicates

that a direct replacement of isoureido groups by a trans-arranged hemiacetal is possible

under the reaction conditions, Scheme 4.[39]

EPIMERIZATION OF CARBOHYDRATES

Reactions with Chloral

Cyclic acetals are generally important protecting groups in carbohydrate chemistry.

They are commonly prepared by acid-catalyzed equilibrium reactions[43 – 47] and

therefore, only temporary protecting groups in the presence of aqueous acids. Acid-

catalyzed acetalizations of carbohydrates with chloral require more drastic reaction

conditions and produce only modest regioselectivities.[48 – 50] Thus, the sulfuric acid ca-

talyzed acetalization of D-glucose with chloral or chloral hydrate results in two

diastereomeric monoacetals and four stereoisomeric diacetals of a-D-glucofuranose.[48]

From these compounds the so-called a-chloralose (1,2-O-trichloroethylidene-a-D-glu-

cofuranose) was occasionally used as a sedative. In 1993 Jacobsen and Sløk[51] reported

the synthesis of carbohydrate trichloroethylidene derivatives via epoxide opening

procedures. In addition, the authors described a convenient two step procedure for the

removal of these acid-stable protecting groups, see also Ref. [52].
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A particular advantage of the one-pot acetalization/epimerization method reported

here is the easy access of rare natural or non-natural sugars from reasonable, common

monosaccharides, e.g., gulose from galactose, altrose from mannose, and tagatose from

fructose. The following survey gives an overview of sugar epimerizations realized via

acetalization with chloral/DCC:

D-Arabinose ! D-Lyxose[53 – 55]

L-Arabinose ! L-Lyxose[56]

D-Lyxose ! D-Arabinose[56]

D-Galactose ! D-Gulose[53,55 – 57]

L-Fucose ! 6-Deoxy-L-gulose[53,55]

D-Mannose ! D-Altrose[30,32,53,55,57,58]

L-Rhamnose ! 6-Deoxy-L-altrose[30,32,58]

D-Fructose ! D-Tagatose[59]

Various protecting groups are tolerated under the reaction conditions. Thus, methyl

glycosides, benzyl glycosides, phenyl 1-thioglycosides, glycosyl azides, isopropylidene

and benzylidene acetals can be used as starting materials as outlined in Table 1. a- and

b-Glycosides of the same sugar produce different yields of epimerization products,

when the acetal function is introduced in the 2,3-position of the sugar. Thus, b-D-

galactopyranosides and b-L-fucopyranosides, respectively, give significantly higher

yields of epimerization products (63%, 80%) than the corresponding a-anomers (16%,

58%),[53,56] Table 1.

Two Important Annotations

1. Chloral produces formylated side products, for some examples see Schemes 6

and 8. The formyl group results from a haloform cleavage of chloral (see also

Ref. [60]). Therefore, the yield of chloral acetals can be decreased, because

formylation also occurs within the triol unit. Generally, longer reaction times

increase the percentage of formyl derivatives. The rigid 1,6-anhydrosugars D-

glucosan, D-galactosan, and D-mannosan, which are only slowly acetalized,

give therefore relatively high amounts of formyl products and reduced yields

of acetals[39]

2. The prochiral chloral reagent produces stereoisomeric acetals, i.e., endo-H and

exo-H diastereomers. These diastereomers show very similar chromatographic

properties, i.e., separation of the pure major isomer is rarely successful in this

way. However, it is not essential when the trichloroethylidene group is only

used as a temporary acid-stable protecting group. Generally, the endo-H form

is predominant (5:1 to 30:1) and can be purified in many cases by fractional

crystallization. The singlet of the acetal proton is a good marker to distinguish

between the two diastereomeric forms, because the endo-H proton is always
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downfield shifted (0.1–0.25 ppm.[53]) compared to the corresponding exo-H

signal. Integration of the acetal-H singlets allows the estimation of the endo-H/

exo-H ratio in the crude product mixture.

Reactions with Hexafluoroacetone, Perfluoroaldehydes,
and Perfluorodialdehydes

Amphiphiles with perfluoroalkyl chains are effective surfactants and tend to form

ordered supramolecular assemblies of higher stability than their hydrocarbon counterparts.

Fluorocarbon chains are not only more hydrophobic but also stiffer than hydrocarbon

chains and therefore have less conformational freedom.[61,62] Representatives of this group

of surfactants were tested as emulsifiers for artificial oxygen carriers (fluorocarbon

emulsions), as components in drug delivery systems or contrast agents based on

fluorocarbons.[63,64] Perfluoroalkylated carbohydrates have neutral and non-toxic head

groups which even may represent binding sites for bio-receptors. Our one-pot acetalization

method allows the production of the precursors of a new type of perfluoroalkyl substituted

carbohydrate surfactants and liquid crystals, respectively.[41,64-66]

Scheme 5 summarizes epimerizations of monosaccharides with perfluoroalkanals in

the presence of DCC. Thus, methyl a-L-rhamnopyranoside (1) was acetalized with

nonafluoropentanal and tridecafluoroheptanal, respectively, generating the cor-

responding methyl 2-O-cyclohexylcarbamoyl-6-deoxy-3,4-O-polyfluoroalkylidene-a-L-

altropyranosides 40 and 41 in isolated yields of 38–48%.[40] It is noteworthy, that

perfluoroalkanals tend to polymerise, therefore, making the use of the corresponding

methyl hemiacetals more favourable. In the case of trifluoroethanal (fluoral),

acetalization of rhamnoside 1 was only successful when the latter was treated with

the methyl hemiacetal of fluoral and DCC. In this way, altrose derivative 42 was

obtained in 55% yield.[40] Hydrates of perfluoroalkanals were also suitable acetalization

reagents; however, the yields of the acetals decreased significantly, Scheme 5.

In a further experiment, methyl L-rhamnoside (1) was reacted with the a,o-

dialdehyde dodecafluorooctane-1,8-dial in the presence of DCC. The corresponding bis-

Scheme 6. Epimerization of methyl quinate and methyl shikimate.
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L-altroside derivative 43 was formed in a yield of 11%, Scheme 5.[40] Further

acetalization/epimerization reactions were reported for methyl a-D-mannopyranoside

(4), benzyl a-D-mannopyranoside (48), methyl 6-O-trityl-a-D-mannopyranoside (50),

and methyl b-d-galactopyranoside (53) using C5-, C7-, and C9-perfluoroaldehydes,

respectively, Scheme 5.[65]

The endo-H/exo-H diastereomeric mixtures accumulate in a ratio of about 5:1.

Column chromatographic separation of the diastereomers failed; however, the pure

endo-H form was obtained by fractional crystallization. The altrose derivatives 45–47,

49, 51, 52 and the gulose derivatives 54–56 are precursors for the synthesis of

perfluoroalkyl substituted amphiphilic mesogens.[64,66]

EPIMERIZATION OF CYCLITOLS

Cyclitols with three or four contiguous OH groups are potential candidates for

epimerizations by non-conventional acetalization. The biological relevance of cyclitols

is well known, although, the separation of inositol derivatives from natural sources is

limited to a few representatives, requiring chemical syntheses of various compounds of

this type.[67 – 71] (�)—Quinic acid is commercially available and its abundance in the

chiral pool has made it an attractive starting material for asymmetric multistep

syntheses of naturally occurring substances and related compounds.[72] The structurally

related shikimic acid can be used as a chiral template in a similar manner. Both quinic

acid and shikimic acid have to show a cis–trans triol unit.

Methyl quinate (61) and methyl shikimate (64) were converted into the corresponding

4-epi-derivatives 62,[73]63[73] and 65[73] as shown in Scheme 6. The pure endo-H

diastereomers were obtained by fractional crystallization from ethyl acetate.

In a study with a cyclitol containing four contiguous OH groups with cis–trans–

trans sequence of the tetrol unit, (1S, 2S, 3S, 4R, 5R)-1-methoxy-2,3,4,5-tetrahydroxy-

Scheme 7. i = chloral, DCC, (CH2Cl)2, reflux; R = cyclohexyl.
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cyclohexane (66) treatment with chloral/DCC yielded a syrupy mixture which

predominantly contained the amorphous solid 67, Scheme 7.[74] A by-product also

containing a trichloroethylidene group was also detected but not identified.

When L-1-O-benzyl-2-O-methyl-chiro-inositol (68) was treated with chloral/DCC,

a competing pathway of epimerization was recognized that generated the D-chiro-

configured by-product 71 (15% yield) besides the major products 69 and 70 with a

muco-configuration, Scheme 7.[75,76]

The formation of muco-inositol derivatives is in conformity with the reaction

pathway described for acetalizations/epimerizations of cis–trans triols (single inversion

at one chiral C-atom), Scheme 2. By contrast, D-chiro-inositol 71 showed inversion of

configuration at two chiral C-atoms related to the starting material. The course of the

reaction could be a tandem-sequence via key intermediate C as marked by arrows in

Scheme 8. It explains the regioselective introduction of the carbamoyl group into the 6-

position of 71 as well as the C–N-coupling at C-5 of 71. The latter corresponds to

isourea experiments of Vowinkel and Gleichenhagen.[77]

Additional epimerization experiments were carried out with L-1-O-benzoyl-2-O-

methyl-chiro-inositol (72), D/L-3,4-di-O-benzoyl-myo-inositol (76), (1S, 2S, 3R, 4S, 5S,

6S)-1-fluoro-2-methoxy-3,4,5,6-tetrahydroxycyclohexane (82), and (1R, 2R, 3S, 4R,

5R)-1-methoxy-2,3,4,5-tetrahydroxycyclohexane (85). In all cases, the expected

Scheme 9. i = HF, Ac2O, MeNO2 (10 : 1 : 35 v/v/v), rt, 4 h; (from Ref. [58].); ii = HF, Ac2O,

MeNO2 (1 : 0.23 : 1.07 v/v/v), rt, 4 h. (From Ref. [79].)

Scheme 8. Competing pathway of a non-classical acetalization using cyclic cis-trans-trans-tetrols.
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products of the two competing pathways were found, Table 2.[54,78] The resulting ratio

of single inversion products (muco-inositols 73, 74, D/L-chiro-inositols 77–80,

fluoroinositol 83, and cyclitol derivative 86, respectively) to the double inverted

products (D-chiro-inositol 75, muco-product 81, fluoroinositol 84, and cyclitol derivative

87, respectively) indicates that electron withdrawing groups suppress the tandem-course

with two inversions, Scheme 8. The acetalization of D/L-3,4-di-O-benzoyl-myo-inositol

was partly accompanied by benzoyl group migration, Table 2.[54,78]

DEPROTECTION

The products formed by acetalization of carbohydrates and inositols with chloral/

DCC contain a useful protecting group pattern which is suitable for stepwise

deprotection reactions. Thus, a selective deformylation of the carbohydrate derivatives

24,[53]32,[79] and the inositol derivatives 70,[75,76]74[78] was possible by heating in 10%

methanolic triethylamine (10–15 min), whereas the inositols 77–80 were simulta-

neously debenzoylated under these reaction conditions, see also Refs. [52,55].

Carbamoyl groups are stable toward methanolic triethylamine in each case.

However, carbamoyl groups located at the 4-position of hexopyranosides migrate to the

6-position on treatment of the compound with methanolic sodium methoxide at room

temperature. That was demonstrated with the 4-O-cyclohexylcarbamoyl-2,3-O-trichlor-

oethylidene-D-gulosides 22, 23, and 25 generating the corresponding 6-O-cyclohex-

ylcarbamoyl-2,3-O-trichloroethylidene-D-gulosides.[53,56] Carbamoyl migration was

not observed, when the 2-O-cyclohexylcarbamoyl-D-altroside 32 was deformylated

with methanolic sodium methoxide at room temperature.[58] On refluxing of

carbamoylated carbohydrates or inositols in 1–2% methanolic sodium methoxide, this

protecting group was selectively removed. The decarbamoylation of compounds

2,[30,32]5,[30,32]16,[56]20,[56]22,[56]23,[56]26,[55]28,[53]32[58]35,[58]45–47,[65]49,[65]54 –
56,[65]62,[73]67,[74]69,[76]71[76] was described, see also Refs. [52,80,81].

As expected, the trichloroethylidene group or a perfluoroalkylidene group is not

attacked by triethylamine or dilute methanolic solutions of sodium methoxide. These

acetals are also stable towards strong acids such as anhydrous HF or HF-containing

systems, Scheme 9.[58,79] However, trichloroethylidene groups can be removed in a two

step procedure. First, the chloral acetal is converted into an ethylidene acetal by

Scheme 10. i = Bu3SnH, AIBN, toluene, 75�C; ii = 60% TFA, 50�C; R=C6H11; RF=C6F13.
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reduction with Raney-Ni[48] or tributylstannane/AIBN.[51] The latter reagent turned out

to be particularly favorable and was therefore exclusively used by us for the reductive

dechlorination step.[52,55,74,80,81] The ethylidene acetals were cleaved without a problem

by acid catalyzed hydrolysis.[52,74,76,80,81] Scheme 10 gives an example of this reaction

sequence.[81]

No method is known to selectively remove perfluoroalkylidene groups. Because

perfluoroalkyl and perfluoroalkylidene substituted carbohydrates are of interest as

emulsifiers in blood substitutes (see review Ref. [63]) and as liquid crystals (see review

Scheme 11. Perfluoralkyl substituted amphiphilic acetals.

Scheme 12. D-Gulopyranosyl donors from phenyl 1-thio-b-D-galactopyranoside.
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Ref. [64]), the amphiphilic D-altrose 94,[65,66]
D-guloses 95–97,[65,66]

D-tagatose 98,[41]

and D-fructose 99[41] were synthesized, Scheme 11.

CONCLUSIONS

1. Monosaccharides, oligosaccharides, and cyclitols containing three contiguous

hydroxyl groups with a cis–trans sequence may be selectively epimerized by a

very simple one-pot procedure, the glycosidic position of sugars being protected.

2. Formaldehyde or carbonyl active imides such as ClCH2CCl2CH=N–

C(O)CH3
[82] do not result in the hoped for epimerization. The latter only

formed several open-chain products on heating (30 h) with methyl a-L-

rhamnoside in the presence of DCC.[39]

3. Inositol derivatives containing four contiguous hydroxyl groups with a cis–

trans–trans sequence turn out to be precursors for two competing epimeriza-

tion reactions realized in a one-pot procedure.

4. The three component acetalization/epimerization method opened various

opportunities for subsequent synthetic steps, because of the diversity of the

protecting group pattern. A practicable example is given in Scheme 12 for

D-gulose derivatives starting with phenyl 1-thio-b-D-galactopyranoside.
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